新北市立板橋高級中學 102 學年度第 2 學期數學科雙週解題《第一回》

- 高一. 設數列 $\langle a_n \rangle$ 滿足遞迴關係 $a_{n+2} = ca_{n+1} + da_n$, 其中 c, d 爲實數, n 爲任意正整數。
 - 1. 試證明: 若方程式 $x^2-cx-d=0$ 之解爲 $x=\alpha$ 二重實根且 $\alpha \neq 0$,則數列 $\langle b_n \rangle = \left\langle \frac{a_n}{\alpha^n} \right\rangle$ 爲一等差數列。(5分)
 - 2. 若 $a_{n+2} = 6a_{n+1} 9a_n$ 且 $a_1 = 0$, $a_2 = 1$, 試求 a_n 的一般式。 (以 n 表示 a_n , 例 2n 1, $n + (-1)^n$)(5分)

- 高二. 設數列 $\langle a_n \rangle$ 滿足遞迴關係 $a_{n+2} = ca_{n+1} + da_n$, 其中 c, d 爲實數, n 爲任意正整數。
 - 1. 試證明: 若方程式 $x^2 cx d = 0$ 有兩相異非零實根 α , β , 則數列 $\langle t_n \rangle = \langle a_{n+1} \beta a_n \rangle, \, \langle s_n \rangle = \langle a_{n+1} \alpha a_n \rangle$ 為兩等比數列,且其公比分別為 α , β , 即 $\begin{cases} a_{n+2} \beta a_{n+1} = \alpha (a_{n+1} \beta a_n) \\ a_{n+2} \alpha a_{n+1} = \beta (a_{n+1} \alpha a_n) \end{cases}$ (5β)
 - 2. 若 $a_{n+2}=a_{n+1}+6a_n$ 且 $a_1=1,\ a_2=1$,試求 a_n 的一般式。(5分)