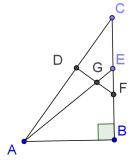
新北市立板橋高級中學 102 學年度第 1 學期數學科雙週解題《第三回》解析

- **高一.** 今有 2013 個數 $a_1, a_2, a_3, \ldots, a_{2013}$ 繞成一圈,若任意相鄰連續 99 個數之和皆爲定值,且 $a_{64} = 64$, $a_{128} = 128$, $a_{256} = 256$, $a_{512} = 512$, $a_{1024} = 1024$, 試求 a_{1007} 之值。
 - 解析. $a_k + a_{k+1} + \ldots + a_{k+98} = a_{k+1} + a_{k+2} + \ldots + a_{k+99} \Rightarrow a_{k+99} = a_k$,故 $a_{1007} = a_{908} = a_{809} = a_{710} = a_{611} == a_{512} = 512$ 。
- 高二. 1. 試證明: 若 α , β 爲銳角且 $\alpha + \beta < 90^{\circ}$, 則 $\tan \alpha + \tan \beta \geq 2 \tan \frac{\alpha + \beta}{2}$.
 - 2. 紙上有一邊長爲 1 的正三角形 ABC 中及一以爲 A 爲圓心, \overline{AB} 爲半徑之圓弧 BC。設 D、E 分別在 \overline{AB} 和 \overline{AC} ,且將這張紙沿 \overline{DE} 對摺,恰使得 A 落在 BC 上。試求 $\triangle ADE$ 面積的最小值。
 - **證1.** 不失一般性假設 $\alpha \geq \beta \Rightarrow \alpha \geq \frac{\alpha+\beta}{2} \geq \beta$ 。

如右圖: $\angle B = 90^{\circ}$, $\overline{AB} = \overline{AD} = 1$, $\angle BAE = \alpha$, $\angle EAC = \beta$, \overline{AF} 為 $\angle BAC$ 之角平分線。其中五邊形 ABEGD 之面積 \geq 四邊形 ABFD。即 $\frac{1}{4}(\tan\alpha + \tan\beta) \geq \frac{2}{4}\tan\frac{\alpha+\beta}{2} \Rightarrow \tan\alpha + \tan\beta \geq 2\tan\frac{\alpha+\beta}{2}$ 。



證2. 令對摺後,A 所落的位置爲點 A', M 爲 $\overline{AA'}$ 中點, $\angle A'AB = \alpha$, $\angle A'AC = \beta$ 。 則有 $\alpha + \beta = 60^{\circ}$, \overline{DE} 垂直且平分 $\overline{AA'}$, $\overline{AM} = \frac{1}{2}$, $\overline{DM} = \frac{1}{2} \tan \alpha$, $\overline{EM} = \frac{1}{2} \tan \beta$ 。 而 $\triangle ADE = \triangle ADM + \triangle AEM$ (皆爲面積) $\Rightarrow \triangle ADE = \frac{1}{8} (\tan \alpha + \tan \beta) \geq \frac{1}{4} \tan 30^{\circ} = \frac{\sqrt{3}}{12}$,且 其中僅當 $\alpha = \beta = 30^{\circ}$ 時,等號成立。